Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 112
1.
Ann Hematol ; 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38503936

Data on iron overload status and change thresholds that can predict mortality in patients with transfusion-dependent ß-thalassemia (TDT) are limited. This was a retrospective cohort study of 912 TDT patients followed for up to 10 years at treatment centers in Italy (median age 32 years, 51.6% female). The crude mortality rate was 2.9%. Following best-predictive threshold identification through receiver operating characteristic curve analyses, data from multivariate Cox-regression models showed that patients with Period Average Serum Ferritin (SF) > 2145 vs ≤ 2145 ng/mL were 7.1-fold (P < 0.001) or with Absolute Change SF > 1330 vs ≤ 1330 ng/mL increase were 21.5-fold (P < 0.001) more likely to die from any cause. Patients with Period Average Liver Iron Concentration (LIC) > 8 vs ≤ 8 mg/g were 20.2-fold (P < 0.001) or with Absolute Change LIC > 1.4 vs ≤ 1.4 mg/g increase were 27.6-fold (P < 0.001) more likely to die from any cause. Patients with Index (first) cardiac T2* (cT2*) < 27 vs ≥ 27 ms were 8.6-fold (P < 0.001) more likely to die from any cause. Similarly, results at varying thresholds were identified for death from cardiovascular disease. These findings should support decisions on iron chelation therapy by establishing treatment targets, including safe iron levels and clinically meaningful changes over time.

2.
Eur J Hum Genet ; 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38351292

Mowat-Wilson syndrome (MOWS) is a rare congenital disease caused by haploinsufficiency of ZEB2, encoding a transcription factor required for neurodevelopment. MOWS is characterized by intellectual disability, epilepsy, typical facial phenotype and other anomalies, such as short stature, Hirschsprung disease, brain and heart defects. Despite some recognizable features, MOWS rarity and phenotypic variability may complicate its diagnosis, particularly in the neonatal period. In order to define a novel diagnostic biomarker for MOWS, we determined the genome-wide DNA methylation profile of DNA samples from 29 individuals with confirmed clinical and molecular diagnosis. Through multidimensional scaling and hierarchical clustering analysis, we identified and validated a DNA methylation signature involving 296 differentially methylated probes as part of the broader MOWS DNA methylation profile. The prevalence of hypomethylated CpG sites agrees with the main role of ZEB2 as a transcriptional repressor, while differential methylation within the ZEB2 locus supports the previously proposed autoregulation ability. Correlation studies compared the MOWS cohort with 56 previously described DNA methylation profiles of other neurodevelopmental disorders, further validating the specificity of this biomarker. In conclusion, MOWS DNA methylation signature is highly sensitive and reproducible, providing a useful tool to facilitate diagnosis.

3.
Am J Hematol ; 99(3): 490-493, 2024 Mar.
Article En | MEDLINE | ID: mdl-38165006

Rate and risk factors for phenoconversion from non-transfusion-dependent ß-thalassemia (NTDT) to transfusion-dependent ß-thalassemia (TDT) during a 10-year follow up of adult patients in Italy.


beta-Thalassemia , Adult , Humans , beta-Thalassemia/therapy , Blood Transfusion , Risk Factors , Italy
5.
Genes (Basel) ; 14(12)2023 Nov 27.
Article En | MEDLINE | ID: mdl-38136956

PIK3CA-related disorders encompass many rare and ultra-rare conditions caused by somatic genetic variants that hyperactivate the PI3K-AKT-mTOR signaling pathway, which is essential for cell cycle control. PIK3CA-related disorders include PIK3CA-related overgrowth spectrum (PROS), PIK3CA-related vascular malformations and PIK3CA-related non-vascular lesions. Phenotypes are extremely heterogeneous and overlapping. Therefore, diagnosis and management frequently involve various health specialists. Given the rarity of these disorders and the limited number of centers offering optimal care, the Scientific Committee of the Italian Macrodactyly and PROS Association has proposed a revision of the most recent recommendations for the diagnosis, molecular testing, clinical management, follow-up, and treatment strategies. These recommendations give insight on molecular diagnosis, eligible samples, preferable sequencing, and validation methods and management of negative results. The purpose of this paper is to promote collaboration between health care centers and clinicians with a joint shared approach. Finally, we suggest the direction of present and future research studies, including new systemic target therapies, which are currently under evaluation in several clinical trials, such as specific inhibitors that can be employed to downregulate the signaling pathway.


Phosphatidylinositol 3-Kinases , Humans , Phosphatidylinositol 3-Kinases/genetics , Consensus , Mutation , Class I Phosphatidylinositol 3-Kinases/genetics , Italy
7.
Neuropediatrics ; 54(6): 433-438, 2023 Dec.
Article En | MEDLINE | ID: mdl-37802085

BACKGROUND: Kleefstra syndrome (KS) or 9q34.3 microdeletion syndrome (OMIM #610253) is a rare genetic condition featuring intellectual disability, hypotonia, and dysmorphic facial features. Autism spectrum disorder, severe language impairment, and sleep disorders have also been described. The syndrome can be either caused by a microdeletion in 9q34.3 or by pathogenic variants in the euchromatin histone methyltransferase 1 gene (EHMT1, *607001). Although epilepsy has been reported in 20 to 30% of subjects, a detailed description of epileptic features and underlying etiology is still lacking. The purpose of this study is to investigate epilepsy features in a cohort of epileptic patients with KS. METHODS: This multicenter study investigated eight patients with KS and epilepsy. Our findings were compared with literature data. RESULTS: We included five patients with 9q or 9q34.33 deletions, a subject with a complex translocation involving EHMT1, and two with pathogenic EHMT1 variants. All patients presented with moderate to severe developmental delay, language impairment, microcephaly, and infantile hypotonia. Although the epileptic manifestations were heterogeneous, most patients experienced focal seizures. The seizure frequency differs according to the age of epilepsy onset, with patients with early-onset epilepsy (before 36 months of age) presenting more frequent seizures. An overtime reduction in seizure frequency, as well as in antiseizure drug number, was observed in all patients. Developmental delay degree did not correlate with seizure onset and frequency or drug resistance. CONCLUSION: Epilepsy is a frequent finding in KS, but the underlying pathogenetic mechanism and specific features remain elusive.


Autism Spectrum Disorder , Epilepsy , Intellectual Disability , Language Development Disorders , Humans , Child, Preschool , Intellectual Disability/complications , Intellectual Disability/genetics , Muscle Hypotonia/genetics , Mutation , Epilepsy/genetics , Seizures
8.
medRxiv ; 2023 Jun 16.
Article En | MEDLINE | ID: mdl-37398376

Purpose: De novo variants in CUL3 (Cullin-3 ubiquitin ligase) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here we aimed to collect sporadic cases carrying rare variants in CUL3, describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism. Methods: Genetic data and detailed clinical records were collected via multi-center collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells. Results: We assembled a cohort of 35 individuals with heterozygous CUL3 variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 33 have loss-of-function (LoF) and two have missense variants. CUL3 LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugates in vitro . Specifically, we show that cyclin E1 (CCNE1) and 4E-BP1 (EIF4EBP1), two prominent substrates of CUL3, fail to be targeted for proteasomal degradation in patient-derived cells. Conclusion: Our study further refines the clinical and mutational spectrum of CUL3 -associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism.

9.
Genes Chromosomes Cancer ; 62(12): 703-709, 2023 12.
Article En | MEDLINE | ID: mdl-37395289

Heterozygous germline or somatic variants in AKT3 gene can cause isolated malformations of cortical development (MCDs) such as focal cortical dysplasia, megalencephaly (MEG), Hemimegalencephaly (HME), dysplastic megalencephaly, and syndromic forms like megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome, and megalencephaly-capillary malformation syndrome. This report describes a new case of HME and capillary malformation caused by a somatic AKT3 variant that differs from the common p.E17K variant described in literature. The patient's skin biopsy from the angiomatous region revealed an heterozygous likely pathogenic variant AKT3:c.241_243dup, p.(T81dup) that may affect the binding domain and downstream pathways. Compared to previously reported cases with a common E17K mosaic variant, the phenotype is milder and patients showed segmental overgrowth, an uncommon characteristic in AKT3 variant cases. These findings suggest that the severity of the disease may be influenced not only by the level of mosaicism but also by the type of variant. This report expands the phenotypic spectrum associated with AKT3 variants and highlights the importance of genomic analysis in patients with capillary malformation and MCDs.


Megalencephaly , Vascular Malformations , Humans , Mutation , Megalencephaly/genetics , Megalencephaly/pathology , Vascular Malformations/genetics , Phenotype , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
10.
Genet Med ; 25(11): 100922, 2023 11.
Article En | MEDLINE | ID: mdl-37403762

PURPOSE: RPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders. METHODS: By using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants. RESULTS: Four cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology. CONCLUSION: Overall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder.


Autism Spectrum Disorder , Epilepsy , Animals , Humans , Rats , Autism Spectrum Disorder/genetics , Epilepsy/genetics , Mutation, Missense/genetics , N-Methylaspartate/metabolism , Neurons/metabolism , Rabphilin-3A
11.
Nat Commun ; 14(1): 2034, 2023 04 11.
Article En | MEDLINE | ID: mdl-37041138

Heterotopic ossification is a disorder caused by abnormal mineralization of soft tissues in which signaling pathways such as BMP, TGFß and WNT are known key players in driving ectopic bone formation. Identifying novel genes and pathways related to the mineralization process are important steps for future gene therapy in bone disorders. In this study, we detect an inter-chromosomal insertional duplication in a female proband disrupting a topologically associating domain and causing an ultra-rare progressive form of heterotopic ossification. This structural variant lead to enhancer hijacking and misexpression of ARHGAP36 in fibroblasts, validated here by orthogonal in vitro studies. In addition, ARHGAP36 overexpression inhibits TGFß, and activates hedgehog signaling and genes/proteins related to extracellular matrix production. Our work on the genetic cause of this heterotopic ossification case has revealed that ARHGAP36 plays a role in bone formation and metabolism, outlining first details of this gene contributing to bone-formation and -disease.


Hedgehog Proteins , Ossification, Heterotopic , Female , Humans , Connective Tissue/metabolism , Hedgehog Proteins/metabolism , Ossification, Heterotopic/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta
12.
Eur J Hum Genet ; 31(11): 1228-1236, 2023 11.
Article En | MEDLINE | ID: mdl-36879111

Despite major advances in genome technology and analysis, >50% of patients with a neurodevelopmental disorder (NDD) remain undiagnosed after extensive evaluation. A point in case is our clinically heterogeneous cohort of NDD patients that remained undiagnosed after FRAXA testing, chromosomal microarray analysis and trio exome sequencing (ES). In this study, we explored the frequency of non-random X chromosome inactivation (XCI) in the mothers of male patients and affected females, the rationale being that skewed XCI might be masking previously discarded genetic variants found on the X chromosome. A multiplex fluorescent PCR-based assay was used to analyse the pattern of XCI after digestion with HhaI methylation-sensitive restriction enzyme. In families with skewed XCI, we re-evaluated trio-based ES and identified pathogenic variants and a deletion on the X chromosome. Linkage analysis and RT-PCR were used to further study the inactive X chromosome allele, and Xdrop long-DNA technology was used to define chromosome deletion boundaries. We found skewed XCI (>90%) in 16/186 (8.6%) mothers of NDD males and in 12/90 (13.3%) NDD females, far beyond the expected rate of XCI in the normal population (3.6%, OR = 4.10; OR = 2.51). By re-analyzing ES and clinical data, we solved 7/28 cases (25%) with skewed XCI, identifying variants in KDM5C, PDZD4, PHF6, TAF1, OTUD5 and ZMYM3, and a deletion in ATRX. We conclude that XCI profiling is a simple assay that targets a subgroup of patients that can benefit from re-evaluation of X-linked variants, thus improving the diagnostic yield in NDD patients and identifying new X-linked disorders.


Genes, X-Linked , X Chromosome Inactivation , Female , Humans , Male , Mothers , Alleles , Chromosomes , Chromosomes, Human, X/genetics , Neoplasm Proteins/genetics
13.
Cancers (Basel) ; 15(3)2023 Jan 26.
Article En | MEDLINE | ID: mdl-36765732

Different scoring systems for the clinical diagnosis of the Beckwith-Wiedemann spectrum (BWSp) have been developed over time, the most recent being the international consensus score. Here we try to validate and provide data on the performance metrics of these scoring systems of the 2018 international consensus and the previous ones, relating them to BWSp features, molecular tests, and the probability of cancer development in a cohort of 831 patients. The consensus scoring system had the best performance (sensitivity 0.85 and specificity 0.43). In our cohort, the diagnostic yield of tests on blood-extracted DNA was low in patients with a low consensus score (~20% with a score = 2), and the score did not correlate with cancer development. We observed hepatoblastoma (HB) in 4.3% of patients with UPD(11)pat and Wilms tumor in 1.9% of patients with isolated lateralized overgrowth (ILO). We validated the efficacy of the currently used consensus score for BWSp clinical diagnosis. Based on our observation, a first-tier analysis of tissue-extracted DNA in patients with <4 points may be considered. We discourage the use of the consensus score value as an indicator of the probability of cancer development. Moreover, we suggest considering cancer screening for negative patients with ILO (risk ~2%) and HB screening for patients with UPD(11)pat (risk ~4%).

14.
Eur J Haematol ; 110(3): 236-242, 2023 Mar.
Article En | MEDLINE | ID: mdl-36367374

INTRODUCTION: Avascular necrosis (AVN) is a severe complication of sickle cell disease (SCD) and involves principally the femoral head. Few data exist about the prevalence of lesions in other segments. METHODS: In this cross-sectional study, 42 children (20 males and 22 females) underwent a magnetic resonance imaging (MRI) of the spine, upper arms, and femurs. The primary outcome was to define the prevalence and locations of bone infarcts. RESULTS: Forty-two patients completed the study; the total median age was 11.9 years (interquartile range = 9.5-13.9). Eleven patients (26.2%) were positive for altered bone findings for a total of 32 lesions. Most of the lesions were in the humerus 17 (53.1%), 11 (34.4%) in the femurs, and 4 (12.5%) in the vertebrae. The median number of vaso-occlusive crises (VOCs) was two and four for patients without and with bone lesions, respectively (p = .01). The annual rate of VOC is the best marker for the positive MRI (odds ratio = 82.6; p = .03), and it is correlated with the number of sites involved (p = .02). CONCLUSIONS: Our study highlights that the prevalence of skeletal lesions could be underestimated, and it provides the basis for clinical reasoning and tailored therapy in SCD children.


Anemia, Sickle Cell , Male , Female , Humans , Child , Prevalence , Cross-Sectional Studies , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/epidemiology , Magnetic Resonance Imaging
15.
J Med Genet ; 60(2): 163-173, 2023 02.
Article En | MEDLINE | ID: mdl-35256403

BACKGROUND: Postzygotic activating PIK3CA variants cause several phenotypes within the PIK3CA-related overgrowth spectrum (PROS). Variant strength, mosaicism level, specific tissue involvement and overlapping disorders are responsible for disease heterogeneity. We explored these factors in 150 novel patients and in an expanded cohort of 1007 PIK3CA-mutated patients, analysing our new data with previous literature to give a comprehensive picture. METHODS: We performed ultradeep targeted next-generation sequencing (NGS) on DNA from skin biopsy, buccal swab or blood using a panel including phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway genes and GNAQ, GNA11, RASA1 and TEK. Additionally, 914 patients previously reported were systematically reviewed. RESULTS: 93 of our 150 patients had PIK3CA pathogenetic variants. The merged PROS cohort showed that PIK3CA variants span thorough all gene domains, some were exclusively associated with specific PROS phenotypes: weakly activating variants were associated with central nervous system (CNS) involvement, and strongly activating variants with extra-CNS phenotypes. Among the 57 with a wild-type PIK3CA allele, 11 patients with overgrowth and vascular malformations overlapping PROS had variants in GNAQ, GNA11, RASA1 or TEK. CONCLUSION: We confirm that (1) molecular diagnostic yield increases when multiple tissues are tested and by enriching NGS panels with genes of overlapping 'vascular' phenotypes; (2) strongly activating PIK3CA variants are found in affected tissue, rarely in blood: conversely, weakly activating mutations more common in blood; (3) weakly activating variants correlate with CNS involvement, strong variants are more common in cases without; (4) patients with vascular malformations overlapping those of PROS can harbour variants in genes other than PIK3CA.


Vascular Malformations , Humans , Mutation/genetics , Phenotype , Genotype , Class I Phosphatidylinositol 3-Kinases/genetics , Vascular Malformations/diagnosis , Vascular Malformations/genetics , p120 GTPase Activating Protein/genetics
16.
Brain ; 146(2): 534-548, 2023 02 13.
Article En | MEDLINE | ID: mdl-35979925

We describe an autosomal dominant disorder associated with loss-of-function variants in the Cell cycle associated protein 1 (CAPRIN1; MIM*601178). CAPRIN1 encodes a ubiquitous protein that regulates the transport and translation of neuronal mRNAs critical for synaptic plasticity, as well as mRNAs encoding proteins important for cell proliferation and migration in multiple cell types. We identified 12 cases with loss-of-function CAPRIN1 variants, and a neurodevelopmental phenotype characterized by language impairment/speech delay (100%), intellectual disability (83%), attention deficit hyperactivity disorder (82%) and autism spectrum disorder (67%). Affected individuals also had respiratory problems (50%), limb/skeletal anomalies (50%), developmental delay (42%) feeding difficulties (33%), seizures (33%) and ophthalmologic problems (33%). In patient-derived lymphoblasts and fibroblasts, we showed a monoallelic expression of the wild-type allele, and a reduction of the transcript and protein compatible with a half dose. To further study pathogenic mechanisms, we generated sCAPRIN1+/- human induced pluripotent stem cells via CRISPR-Cas9 mutagenesis and differentiated them into neuronal progenitor cells and cortical neurons. CAPRIN1 loss caused reduced neuronal processes, overall disruption of the neuronal organization and an increased neuronal degeneration. We also observed an alteration of mRNA translation in CAPRIN1+/- neurons, compatible with its suggested function as translational inhibitor. CAPRIN1+/- neurons also showed an impaired calcium signalling and increased oxidative stress, two mechanisms that may directly affect neuronal networks development, maintenance and function. According to what was previously observed in the mouse model, measurements of activity in CAPRIN1+/- neurons via micro-electrode arrays indicated lower spike rates and bursts, with an overall reduced activity. In conclusion, we demonstrate that CAPRIN1 haploinsufficiency causes a novel autosomal dominant neurodevelopmental disorder and identify morphological and functional alterations associated with this disorder in human neuronal models.


Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Induced Pluripotent Stem Cells , Language Development Disorders , Neurodevelopmental Disorders , Animals , Mice , Humans , Autism Spectrum Disorder/genetics , Haploinsufficiency/genetics , Neurodevelopmental Disorders/complications , Neurodevelopmental Disorders/genetics , Proteins/genetics , Cell Cycle Proteins/genetics
17.
Am J Med Genet C Semin Med Genet ; 190(4): 520-529, 2022 12.
Article En | MEDLINE | ID: mdl-36461154

Mosaic RASopathies are a heterogeneous group of diseases characterized by the presence at birth or early onset of congenital anomalies, cutaneous and vascular anomalies, segmental overgrowth, and increased cancer risk. They are caused by somatic pathogenic variants of the genes belonging the RAt Sarcoma Mitogen-activated protein kinase (RAS/MAPK) pathway causing its hyperactivation. Here, we review the clinical and molecular characteristics of this heterogeneous group of diseases, including the possibilities of molecular diagnosis and new therapeutic perspectives.


Mitogen-Activated Protein Kinases , ras Proteins , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , ras Proteins/genetics
18.
Am J Med Genet A ; 188(12): 3492-3504, 2022 12.
Article En | MEDLINE | ID: mdl-36135330

Esophageal atresia/tracheoesophageal fistula (EA/TEF) is a life-threatening birth defect that often occurs with other major birth defects (EA/TEF+). Despite advances in genetic testing, a molecular diagnosis can only be made in a minority of EA/TEF+ cases. Here, we analyzed clinical exome sequencing data and data from the DECIPHER database to determine the efficacy of exome sequencing in cases of EA/TEF+ and to identify phenotypic expansions involving EA/TEF. Among 67 individuals with EA/TEF+ referred for clinical exome sequencing, a definitive or probable diagnosis was made in 11 cases for an efficacy rate of 16% (11/67). This efficacy rate is significantly lower than that reported for other major birth defects, suggesting that polygenic, multifactorial, epigenetic, and/or environmental factors may play a particularly important role in EA/TEF pathogenesis. Our cohort included individuals with pathogenic or likely pathogenic variants that affect TCF4 and its downstream target NRXN1, and FANCA, FANCB, and FANCC, which are associated with Fanconi anemia. These cases, previously published case reports, and comparisons to other EA/TEF genes made using a machine learning algorithm, provide evidence in support of a potential pathogenic role for these genes in the development of EA/TEF.


Esophageal Atresia , Tracheoesophageal Fistula , Humans , Tracheoesophageal Fistula/diagnosis , Tracheoesophageal Fistula/genetics , Tracheoesophageal Fistula/complications , Esophageal Atresia/diagnosis , Esophageal Atresia/genetics , Esophageal Atresia/complications , Exome/genetics , Exome Sequencing
19.
Genes Chromosomes Cancer ; 61(12): 740-746, 2022 12.
Article En | MEDLINE | ID: mdl-35999193

Cutaneous skeletal hypophosphatemia syndrome (CSHS) is caused by somatic mosaic NRAS variants and characterized by melanocytic/sebaceous naevi, eye, and brain malformations, and FGF23-mediated hypophosphatemic rickets. The MEK inhibitor Trametinib, acting on the RAS/MAPK pathway, is a candidate for CSHS therapy. A 4-year-old boy with seborrheic nevus, eye choristoma, multiple hamartomas, brain malformation, pleural lymphangioma and chylothorax developed severe hypophosphatemic rickets unresponsive to phosphate supplementation. The c.182A > G;p.(Gln61Arg) somatic NRAS variant found in DNA from nevus biopsy allowed diagnosing CSHS. We administered Trametinib for 15 months investigating the transcriptional effects at different time points by whole blood RNA-seq. Treatment resulted in prompt normalization of phosphatemia and phosphaturia, catch-up growth, chylothorax regression, improvement of bone mineral density, reduction of epidermal nevus and hamartomas. Global RNA sequencing on peripheral blood mononucleate cells showed transcriptional changes under MEK inhibition consisting in a strong sustained downregulation of signatures related to RAS/MAPK, PI3 kinase, WNT and YAP/TAZ pathways, reverting previously defined transcriptomic signatures. CSHS was effectively treated with a MEK inhibitor with almost complete recovery of rickets and partial regression of the phenotype. We identified "core" genes modulated by MEK inhibition potentially serving as surrogate markers of Trametinib action.


Chylothorax , Hamartoma , Hypophosphatemia , Nevus, Pigmented , Nevus , Rickets, Hypophosphatemic , Skin Neoplasms , DNA , GTP Phosphohydrolases/genetics , Humans , Hypophosphatemia/diagnosis , Hypophosphatemia/genetics , Membrane Proteins/genetics , Mitogen-Activated Protein Kinase Kinases , Nevus, Pigmented/diagnosis , Nevus, Pigmented/genetics , Nevus, Pigmented/metabolism , Phosphates , Phosphatidylinositol 3-Kinases , Rickets, Hypophosphatemic/genetics , Skin Neoplasms/genetics , Syndrome
20.
Nat Genet ; 54(9): 1320-1331, 2022 09.
Article En | MEDLINE | ID: mdl-35982160

Some individuals with autism spectrum disorder (ASD) carry functional mutations rarely observed in the general population. We explored the genes disrupted by these variants from joint analysis of protein-truncating variants (PTVs), missense variants and copy number variants (CNVs) in a cohort of 63,237 individuals. We discovered 72 genes associated with ASD at false discovery rate (FDR) ≤ 0.001 (185 at FDR ≤ 0.05). De novo PTVs, damaging missense variants and CNVs represented 57.5%, 21.1% and 8.44% of association evidence, while CNVs conferred greatest relative risk. Meta-analysis with cohorts ascertained for developmental delay (DD) (n = 91,605) yielded 373 genes associated with ASD/DD at FDR ≤ 0.001 (664 at FDR ≤ 0.05), some of which differed in relative frequency of mutation between ASD and DD cohorts. The DD-associated genes were enriched in transcriptomes of progenitor and immature neuronal cells, whereas genes showing stronger evidence in ASD were more enriched in maturing neurons and overlapped with schizophrenia-associated genes, emphasizing that these neuropsychiatric disorders may share common pathways to risk.


Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease , Humans , Mutation
...